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Abstract—We address the problem of planning patrol routes to
maximize coverage of important locations (hot spots) at minimum
cost (length of patrol route). We model a road network using an
edge-weighted graph in which edges represent streets, vertices
represent intersections, and weights represent importance of the
corresponding streets. We describe efficient methods that use
this input to determine the most important patrol routes. In
addition to the importance of streets (edge weights), important
routes are affected by the topology of the road network. Our
methods permit automation of a labor-intensive stage of the
patrol-planning process and aid dynamic adjustment of patrol
routes in response to changes in the input graph (as a result of
a developing situation, for instance).

I. INTRODUCTION

We address the task of planning patrol routes for crime pre-

vention and response. Although, for concreteness, we present

our work in the context of routes for police patrols on a road

network, our methods are applicable to many other environ-

ments that call for the selection of surveillance and situation-

response routes to maximize the benefit of the selected routes.

Consider a network of roads, such as that found in a city,

neighborhood, or other jurisdiction. Fig. 1 depicts a typical

example, based on data from the MassGIS database [24]. We

model this network using a graph in which vertices represent

intersections and edges represent segments of streets between

these intersections. Henceforth, we shall use the term street to

mean street-segment, i.e., the portion of a street between two

consecutive intersections. In a typical jurisdiction, we may

expect several hundred edges in the graph representing the

road network. Prior work has highlighted the importance of

focusing on the spatial distribution of crime [31], [30]. In this

paper, we model locations on a street-wise basis. That is, the

importance of a location is quantified by assigning scores to

the nearby streets (weights on the corresponding edges of the

graph).

At first glance, it may seem that all we need to do to

maximize benefit is to plan patrols that visit locations with

frequencies that are proportional to their importance scores.

However, this scheme works only if we ignore the topology

of the road network. Equivalently, it works only if we assume

that there is no cost associated with a patrol car moving

from one location to another. While this assumption may

be reasonable in extremely small jurisdictions, it does not

hold true in typical jurisdictions consisting of hundreds or

thousands of street-segments. For example, consider the small

network of roads suggested by Fig. 6. If we pick the three most

important locations (highest edge-weights), we obtain a patrol

route composed of edges (b, f), (g, i), and (a, b). However,

a transition between (g, i) and the other two edges requires

traversing (b, g), and the cost of this traversal (travel time,

work hours, etc.) cannot be avoided in this route. It may be

better to select (b, g) instead of (a, b) even though the latter

has a higher weight. Such effects of the topology of the road

network rapidly increase in complexity as the network grows

in size. In general, we wish to find important patrol routes (as

an extension of important locations), which we define as those

that provide the maximum benefit per unit cost. The benefit

of a route is the sum of the importance scores of locations it

visits (sum of the edge weights), while its cost is its length

(number of edges).

We note that this paper addresses only one component

of the complex process of planning patrol routes. Our goal

is not to provide an automated replacement for the entire

process. Rather, we propose a tool that automates a small

but important and labor-intensive component of the overall

process: determining important patrol routes based on im-

portance scores of locations and the topology of the road

network. This component depends crucially on other tasks,

not addressed in this paper, on both its input and output side.

On the input side, we do not address how importance scores

are derived. (The road network itself, without the scores, is

easily derived from existing maps and other planning data.)

On the output side, we do not address how the proposed

patrol routes are staffed, or how they are modified based on

the expertise of the practitioners. This high-level data flow is

summarized by Fig. 2. Important locations and their scores

are determined using a combination of domain expertise,

feedback from patrols, and recent events. Together with the

road network, the scores define the weighted graph, which is

the main input to our method. (The location tree is described

in the next section.) Our hope is that an automated solution

to part of the process will allow practitioners to better focus

on the rest of the process. Our approach also permits some

strategies that are otherwise impractical. For instance, it is

possible to quickly recompute the potentially effective patrol

routes when the importance scores of locations change as a

result of ongoing activity.



Fig. 1. A screenshot of the interactive visualization component of our patrol-planning system. The window shows a map of streets in Falmouth, Massachusetts.
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Fig. 2. High-level data-flow for patrol route planning. Solid arrows represent
automated tasks addressed by this paper, while dashed arrows represent
additional work, typically with human effort.

In our graph model, the benefit of a patrol route is the

sum of the weights of its constituent edges, while its cost

is the number of edges. We refer to their ratio, benefit/cost,

as the density of the route or path. We need to specify two

additional parameters to complete the problem definition: The

first parameter, P , denotes the desired minimum length of a

patrol route. If we do not specify a minimum length, then

a route composed of only the heaviest edge is the densest

because adding any additional edges will lower the average

weight of edges in the route, and thus the density. More

important, such short routes are not of much practical use

for patrols. A typical value for P may range in the tens to

hundreds, depending on factors such as the length of the street

segment represented by an edge in the graph and the expected

speed of travel. The second parameter, R, denotes the desired

number of important routes. The simplest case is R = 1,

when we find only the most important route. However, as

noted above, there are several factors that are not modeled

by our method that must be used to determine the final set of

patrol routes. It is therefore useful to produce several important

routes (say, a few dozen), in descending order of importance.

One may expect here a parameter P ′ denoting the desired

maximum length of a patrol route. This parameter is not as

important as P , because longer routes tend to be not as dense

as shorter ones. (In particular, if we are looking for important

routes of length at least P , then there is always a densest—

i.e., most important—route of length no greater than 2P − 1.)

We therefore skip the parameter P ′ in our descriptions below.

However, it can be included by making a very simple change

to our method.

After covering some preliminary ideas inn the next section,

we present, in Section III, our method for computing high-

density (i.e., important) routes based on a simple dynamic

programming algorithm that operates on a spanning tree of the



graph modeling the road network. On a graph with N vertices

and M edges, its running time is O(M + N log N + PRN)
and its space requirement is O(M +NP ). We describe related

work in Section IV and conclude in Section V.

II. PRELIMINARIES

Recall, from Section I, that we model a network of roads

using a graph, called the street-graph, in which vertices rep-

resent intersections and edges represent street-segments. The

benefit of patrolling a street-segment is modeled by associating

a weight, proportional to that benefit, with each edge. We do

not model the cost of patrolling a street-segment explicitly

but instead assume that the weights represent benefit per unit

cost. For example, if the cost of street-segments is their length

(in real distance on the ground), then the weight we associate

with each edge is the ratio of that edge’s benefit to its length.

A patrol route is modeled as a walk (see below) in the street

graph. The notion of the benefit of a street-segment is extended

to that of a patrol in the natural manner: It is the sum of the

sequence of weights corresponding to the sequence of edges

forming the walk. We elaborate on these ideas below.

Following standard terminology [4], we define a graph G =
(V, E) where V is the set of vertices and E ⊆ V 2 is the set

of edges. An edge e = (v1, v2) is said to be incident on the

vertices v1 and v2, which are called the endvertices of e. A

walk of length k is an alternating sequence of k + 1 vertices

and k edges, v0, e1, v1, e2, v2, . . . , ek, vk such that each edge

is incident on the vertices on either side of it; that is, vi−1 and

vi are the endvertices of ei for i = 1, . . . , k. The edges ei and

vertices vi are not necessarily distinct. If v0 = vk, we say the

walk is closed. We shall use the term k-walk to refer to a walk

of length k. An edge-weighted graph is a graph G = (V, E)
along with an edge-weight function w : E → R.

The weight of a walk W = v0, e1, v1, e2, v2, . . . , ek, vk is

w(W ) =
∑k

i=1 w(ei). Note that when an edge e appears

multiple times in a walk, it contributes an amount equal to

its weight for each occurrence. In other words, a patrol route

that covers a street multiple times yields a benefit for that

street each time the street is traversed. This model does not

distinguish between patrol routes that traverse a street multiple

times in rapid succession and those that do so separated by

larger time intervals. Consider the street-graph suggested by

Fig. 3, with all edge weights being equal. Our definition of

the weight (hence, benefit) of a walk yields the same weight

for the following walks:

W1 = a, 1, b, 2, c, 3, d, 4, e, 5, f, 6, a

W2 = a, 1, b, 2, c, 3, d, 3, c, 2, b, 1, a

Intuitively, we may prefer W1 over W2 because it covers

a larger number of streets. Such effects are not explicitly

captured by our model.

Our focus is on determining patrol routes that provide the

maximum benefit per unit cost, subject to the topological

constraints of the street network.

We define the density d(W ) of a k-walk W =
v0, e1, v1, e2, v2, . . . , ek, vk, with k > 0, to be its
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Fig. 3. A simple street-graph.

total weight divided by its length:

d(W ) =
1

k

k
∑

i=1

w(ei)

We may then state our problem as that of finding the densest

walks of length at least K. We note that the phrase K-walk

in the name of the problem statement below is interpreted as

a walk of length at least K.

Densest Closed K-Walk (DCKW): Given an edge-

weighted graph G = (V, E) and a positive integer

K, find a closed k-walk W in G, with k ≥ K, such

that there is no closed k′-walk in G, with k′ ≥ K,

that is denser than W ; that is, there is no closed

k′-walk W ′ such that k′ ≥ K and d(W ′) > d(W ).

Our focus on density rather than total weight is motivated

by the need to balance the costs and benefits of patrols. While

longer patrol routes may provide a larger benefit, the additional

cost may not be justifiable. Even if the cost of traversing a

street is incorporated into the weight of the corresponding

edge in the graph (for instance, by setting the weight to the

benefit per unit cost), computing only the walks of highest

total weight is not a desirable strategy because the time spent

on patrolling the less dense segments may be better spent (in

terms of overall benefit) on patrolling the denser segments

more frequently. Computing walks of large total weight also

requires that the walks be suitably restricted because it is

otherwise possible to extend any finite walk by another edge to

obtain a walk of larger weight. One strategy is to limit attention

simple walks, which are walks that to not repeat any vertex or

edge, except that the first and last vertex may be the same. The

problem is then a variant of the well-studied NP-hard problem

of finding the longest path in a graph [18], [11], [19]. Other

variations, such as one that requires all streets in a given set

to be patrolled, at minimum cost, are very similar to other

well-studied problems, such as the Chinese Postman Problem

[25]. Although such variations are worth further study, we do

not discuss them further in this paper, limiting ourself to our

formulation that uses densest walks.

In general, there may be several walks in a graph satisfying

the criteria for a densest closed K-walk (for a given K). For

example, Fig. 4 suggests a graph, with all edge-weights set to

one, in which each of the nested polygons is a densest 3-walk,

with density equal to one.
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Fig. 4. A construction illustrating densest K-walks of multiple lengths.

In light of the above example, we may refine our problem

definition by defining the shortest densest closed K-walk as

follows. (As in our earlier problem definition, the phrase K-

walk is interpreted as a walk of length at least K.)

Shortest Densest Closed K-Walk (SDCKW): Given

an edge-weighted graph G = (V, E) and a positive

integer K, find a closed k-walk W in G, with k ≥
K, such that

• there is no closed k′-walk in G, with k′ ≥ K,

that is denser than W ; that is, there is no closed

k′-walk W ′ such that k′ ≥ K and d(W ′) >
d(W ); and

• all closed walks in G that are as dense as W
are no shorter than W ; that is, if W ′′ is a closed

k′′-walk with k′′ ≥ K and d(W ′′) = d(W ) then

k′′ ≥ k.

A graph may contain multiple shortest densest closed K-

walks. An enumeration of all such walks is useful for patrol

planning because we may then select among the alternatives,

or combine some of them, based on other criteria for patrols. In

general, it may also be desirable to extend such an enumeration

to all densest walks (not just the shortest), or to walks within

some threshold of the densest. However, the number of densest

closed K-walks may be exponential in the size of the input

graph, as suggested by the construction of . Fig. 5, with all

edge weights being the same.

Fig. 5. A graph with an exponentially large number of densest closed walks.

In some instances, we may prefer longer walks to shorter

ones. For example, longer patrols may be desirable as a

means of covering a larger area using a small number of

personnel. Now, any closed walk can be extended indefinitely

by simply repeating the closed walk multiple times. Although

such patrols may in fact be exactly what is desired, there is

no additional practical value gained from such repeating or

redundant closed walks.

In the next section, we focus on a restricted version of the

shortest densest closed K-walk problem described above in

which walks are required to traverse each used street once in

each direction. That is, if a patrol route traverses a street in one

direction then it must also traverse it in the reverse direction.

Although this restriction does preclude some desirable patrol

routes, the routes that remain are practically useful and can be

computed very efficiently.

III. IMPORTANT PATROL ROUTES

Recall that we quantify the importance of a route by its

density, which is the ratio of its total weight to its length.

Our task, then, is to find high-density paths in the given

weighted graph. A naive method that computes the density of

all paths, or an indiscriminate number of paths, is not feasible

for even moderately large inputs because of the number of

paths grows exponentially in the input size. By using methods

for finding dense segments in sequences, such as the algorithm

by Goldwasser, Kao, and Lu [13], it is possible to restrict

our attention to only maximal paths in the graph, i.e., paths

that cannot be extended with additional edges. However, the

reduction in the number of paths to be considered is not

sufficient and the resulting method remains impractical.

A. Location Tree

Our method for finding important patrol routes (densest

routes) begins by computing a minimum spanning tree of the

input graph, after temporarily reversing the sense of the edge

weights, so that we obtain a heaviest spanning tree, which we

call the location tree. During this step, the weight of each non-

tree edge is added to the heaviest of the tree edges with which

it shares a vertex. Although this transformation results in some

loss of information, it also allows us to use a very efficient

method to find the densest routes. Recall, from Section I, that

the routes produced by our method are meant to serve as a

basis for further analysis that incorporates additional factors.

Furthermore, the inputs to the problem (importance scores

of locations) are, by nature, imprecise. Thus it is reasonable

to trade off accuracy for efficiency. Using standard methods

(Prim’s algorithm with a Fibonacci heap) [10], we can build

the location tree in O(M + N log N) time; we therefore omit

further details of this step in this paper. Fig. 6 suggests a

sample location tree. This tree, and the rest of the example

described below is artificially small for presentation purposes.

As we have noted, a typical input is likely to contain hundreds

or thousands of edges. Our methods are efficient enough for

such inputs.

B. Densest Paths

Consider the set Snp of all paths that originate at a vertex n
and contain exactly p edges. Let X [n, p] be the density of the

densest path in Snp, if |Snp| > 0, and 0 otherwise. Similarly,

let Y [n, p] be the density of the second-densest path in Snp, if

|Snp| > 1, and 0 otherwise. In case of multiple densest paths in
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Fig. 6. A small example of a location tree. Edges represent streets and
vertices, labeled using letters, represent intersections. The number next to
each edge indicates its weight, i.e., importance.

Snp, we arbitrarily designate one as the densest and another as

the second-densest. The case of multiple second-densest paths,

but a single densest one, is handled analogously. Further, if

X [n, p] > 0 then let U [n, p] denote the vertex that immediately

follows n in the densest path. Similarly, if Y [n, p] > 0 then

let V [n, p] denote the vertex that immediately follows n in the

second-densest path.

We can compute the values X [n, p] and Y [n, p] (and U [x, n]
and V [x, n]) for all vertices n in a tree T , for increasing values

of p, using a dynamic programming algorithm based on the

following recurrence:

X [n, p] = max
(n,m)∈T

{

w(n, m) + (p− 1) · Z(n, m, p− 1)

p

}

(1)

where

Z(n, m, p− 1) =

{

Y [m, p− 1] if U [m, p− 1] = n
X [m, p− 1] otherwise

In either case, U [n, p] is the m yielding the maximum value on

the right-hand side of the equation. The recurrence for Y [n, p]
(and V [n, p]) is essentially as above, with the roles of X and

Y , and U and V , interchanged, and with the max function

replaced by one that picks the second-largest value.

Roughly, the recurrence says that the densest p-path (path of

length p) originating from a vertex n begins with an edge e to

a vertex m such that the sum of e’s weight and the weight of

the densest (p− 1)-path originating at m is the largest among

all neighbors m of n. However, we need to check for the case

in which the densest (p− 1)-path originating at m has (m, n)
as the first edge. In this case, we must disregard the densest

(p− 1)-path from m and use the second-densest one instead.

This condition is checked using the vertices stored in the U
array.

C. Computing Densest Paths

The resulting algorithm is outlined in Listing 1. The func-

tion MPDENS computes the density of the densest paths in T
that contain at least P edges. As suggested by line 36, it also

saves the values of a few program variables that will be used

by the function MDPATH, described below. Line 22 computes

the fraction on the right-hand side of the recurrence above. The

two-dimensional arrays X , Y , U , and V are populated in order

of increasing p (second subscript) values. We note that the V
array is not required for the computation and is included only

Listing 1 Maximum path density in tree T

1: function MPDENS(T, P )

2: for all vertices n ∈ T do

3: X [n, 0]← 0
4: Y [n, 0]← 0
5: U [n, 0]← n
6: V [n, 0]← n
7: end for

8: d∗ ← 0
9: p∗ ← 0

10: for all p← 1 . . . 2P − 1 do

11: for all vertices n ∈ T do

12: X [n, p]← 0
13: Y [n, p]← 0
14: U [n, p]← n
15: V [n, p]← n
16: for all edges (n, m) ∈ T do

17: if U [m, p− 1] = n then

18: Z ← Y [m, p− 1]
19: else

20: Z ← X [m, p− 1]
21: end if

22: d← (w(n, m) + (p− 1) · Z)/p
23: if d > X [n, p] then

24: Y [n, p]← X [n, p]
25: V [n, p]← U [n, p]
26: X [n, p]← d
27: U [n, p]← m
28: if p ≥ P ∧ d > d∗ then

29: d∗ ← d
30: p∗ ← p
31: end if

32: end if

33: end for

34: end for

35: end for

36: return d∗ (and save p∗, X, U )

37: end function

for presentation purposes. The two outermost nested for-loops,

on lines 10 and 11 iterate through the two dimensions of the

arrays, corresponding to the two subscripts of the recurrence

(1). The innermost loop, on line 16, iterates over all edges

(n, m) incident on a vertex n, storing the highest and second-

highest values of the expression in equation (1) along with the

supplementary information in U and V .

The operation of the function MPDENS of Listing 1 on the

sample data suggested by Fig. 6 is summarized in Fig. 7, for

P = 2. Each set of four rows in the table (demarcated with

horizontal lines) corresponds to one iteration of the for-loop

on line 10 of Listing 1, for increasing values of the loop index

p.

In Listing 1, the upper limit of the loop index p is set to

2P−1. In case of an input parameter P ′ specifying the longest

desired path, the upper limit may be replaced by P ′. At this



vertex n
p a b c d e f g h i j k l

0 X [n, p] 0 0 0 0 0 0 0 0 0 0 0 0

U [n, p] a b c d e f g h i j k l

Y [n, p] 0 0 0 0 0 0 0 0 0 0 0 0

V [n, p] a b c d e f g h i j k l

1 X [n, p] 10 40 5 1 8 40 20 1 20 2 5 8

U [n, p] b f a a l b i b g i e e

Y [n, p] 5 10 0 0 5 0 7 0 2 0 0 0

V [n, p] c a c d k f b h j j k l

2 X [n, p] 25 13.5 7.5 5.5 6 25 23.5 20.5 13.5 11 3.5 5

U [n, p] b g a a a b b b g i e e

Y [n, p] 5 7.5 0 0 0 0 11 0 0 0 0 0

V [n, p] e a c d e f i h i j k l

3 X [n, p] 12.3 9.7 18.3 17 17.3 22.3 7.3 9.3 22.3 9.7 6.7 5.7

U [n, p] b g a a a b b b g i e e

Y [n, p] 0 6.7 0 0 0 0 0 0 0 0 0 0

V [n, p] a a c d e f g h i j k l

Fig. 7. A summary of the operation of function MPDENS of Listing 1 on the location tree of Fig. 6, for P = 2.

point, the default choice of 2P − 1 may seem curious. The

reason for this choice is that there is always a path of length

at most 2P − 1 among all the densest paths of length at least

P . To verify this claim, let R denote the set of densest paths

and let r be a shortest path in R. If r were to contain 2P or

more edges, then it would be possible to bisect r into two sub-

paths r1 and r2, each containing at least P edges. Further, the

densities of r1 and r2 cannot both be lower than the density

of r, so that we would arrive at a path that is shorter than r
and at least as dense, which is a contradiction. It follows that

there exists at least one densest path that contains fewer than

2P edges.

Listing 2 Recover maximum-density paths

1: function MDPATH(T, d∗, p∗, X, U )

2: R← {()}
3: for p← p∗ . . . 1 do

4: for n ∈ T do

5: if X [n, p] = d then

6: m← U [n, p]
7: d← (d · p− w(n, m))/(p− 1)
8: R′ ← MDPATH(T, d, p− 1, X, U)
9: for r′ ∈ R′ do

10: R← r′‖(n)
11: end for

12: end if

13: end for

14: end for

15: return R
16: end function

Function MPDENS computes only the density of the densest

path, and not the path itself. The latter, however, is easily

recovered from the saved X and U arrays as summarized in

function MDPATHS, Listing 2. The main idea is to trace the

evaluation of the recurrence (1) backwards by locating the

vertex m that maximizes the right-hand side of the recurrence,

as selected on line 27 of Listing 1. On line 10 of Listing 2, we

use the symbol ‖ to denote an operator that concatenates two

sequences. The for loop on line 9 iterates over all sequences

identified by the recursive invocation of the function. The for

loop on line 4 finds all vertices that maximize the right-hand

side of the recurrence. As a result, the function produces all

the densest paths of length in [P, 2P − 1]. If only a single

densest path is needed, the loops can be terminated when the

first match is found.

As noted in Section I, it is useful to compute several, R,

densest paths instead of only one or, as in Listing 2, only those

of maximum density. For this purpose, we invoke MPDENS and

MDPATH repeatedly on modified versions of the input. After

each invocation, we modify T by setting to 0 the weights of

all edges included in the output of MDPATH.

D. Analysis

The initial computation of the location tree has a space and

time complexity of O(M) and O(M +N log N), respectively,

using standard methods [10]. The arrays X , Y , U , and V
require space proportional to NP and all other program vari-

able require only constant space. Thus the space complexity

of MPDENS is O(NP ), for an overall space complexity of

O(M + NP ). In each iteration of the for-loop on line 10 of

Listing 1 (i.e., for each value of the loop index p), each edge

of the location tree is examined once. Since the tree has N−1
edges, the loop requires O(N) time, and the function overall

requires O(NP ) time. When invoked O(R) times to yield

up to R important routes, the time complexity of the method

overall is therefore O(M + N log N + PRN).



IV. RELATED WORK

The importance of locations in understanding and control-

ling crime has been highlighted by much prior work, e.g.,

[31], [30]. The work described in this paper is relevant in the

context of projects such as COPLINK [20]. For example, our

method could be used to plan border patrols. In this context,

work by Adam et al. on detecting anomalies based on data

gathered from multiple sources is a potential source for the

edge weights that form the input to our method [1]. Reis,

Melo, Coelho, and Furtado present a genetic algorithm for si-

multaneously discovering crime hotspots and planning patrols

[28]. That work shares with ours the goal of planning patrols.

However, our approach is combinatorial instead of the genetic

algorithm they employ. It should be interesting to combine

the two approaches, especially in regard to discovering the

edge weights used as the input to our method. Conversely, the

important routes produced by our method could be used to

speed up convergence of their method.

Our solution is based on simplifying the graph of the

road network into a spanning tree with suitably adjusted

edge weights. A much more extreme simplification of the

problem restricts the graph to be a a single path of arbi-

trary length, i.e., a sequence. Although quite limiting, such

a formulation has applications in planning highway patrols.

Sections of a very long interstate highway, for example, may

be reasonably modeled as a sequence by ignoring highway

ramps and other side streets. In this case, it is possible to use

work on the maximum-density segment problem. For example,

Goldwasser, Kao, and Lu present a linear-time algorithm that

uses a sweep-line data structure [13]. Lin, Huang, Jiang, and

Chao present a simpler method for computing a set of densest

non-overlapping segments based on maintaining a priority

queue of subproblems generated by repeatedly splicing out

dense segments [22].

Our method for computing important routes is based on the

work of Lin, Kuo, and Chao on length-constrained maximum-

density paths [21]. Similar methods have been applied to

biomolecular sequence analysis [23]. It may be useful to

generalize from important routes to important subtrees, or even

important subgraphs. In the case of important subtrees, Hsieh

and Chou present pseudo-polynomial-time algorithms for the

finding the densest subtree [16]. In the case of general graphs,

there is a significant amount of work on computing dense

subgraphs under various constraints, where the density of a

subgraph is defined as the ratio of the number of edges to the

number vertices it contains [12], [6]. These notions of density

are different from the one used in this paper and these results

are not directly applicable to our problem. Nevertheless, it

should be interesting to explore alternative formulations of the

problem in the context of such work.

The model used in this paper does not make explicit use

of the geometry of the street network. Rather, this model

maps geometric aspects, such as the length of a street and

its distance from an intersection, to the edge weights. Our

focus has been on the constraints induced by the topology

of the street network. In general, it is useful to consider

both topological and geometric aspects of this problem. For

example, it is useful to model the benefit of patrolling a street

that is geometrically close to another, even if the latter street is

not directly patrolled. It should be interesting to adapt spatial

data structures and access methods for this purpose [15], [2],

[29].

As noted in Section I, our methods are efficient enough

to permit rapid recomputation of important patrol routes as

conditions change. A related task is that of determining the

current locations of patrol cars so that they may be efficiently

rerouted as necessary. This problem is essentially that of map-

matching: Given vehicle trajectory data (from on-board GPS

units, dead-reckoning, and other sources) and a map, we need

to determine the vehicle trajectory on the map. This problem

is challenging because trajectory data is typically very noisy,

with error margins larger than the distance between streets

and other features. An incorrect decision at one point in the

trajectory (such as picking the wrong option at a forking

road) may result in amplified errors later in the trajectory (for

instance, when the forked roads diverge to large distances).

Several methods have been proposed for solving various

versions of the map-matching problem [27], [5], [17], [3], [26],

[14], [9], and those methods can be used in conjunction with

the methods of this paper to provide a dynamic patrol-route

guidance.

Our work in this paper has assumed that a single entity,

such as a police jurisdiction, is the only party responsible for

organizing patrols. It is often useful to model other parties who

may have potentially conflicting interests in this regard. For

example, the residents of a street may prefer frequent patrols

on their street even if such patrols are not optimal in the sense

of this paper. Given a fixed number of patrol officers, such

desires of the residents of different streets are, in general,

conflicting; that is, assigning more frequent patrols to one

street is likely to require fewer patrols on others. The situation

is complicated by the constraints induced by the topology of

the network of streets. For example, a street that is on the

most likely route from a central location to another street that

has lobbied for additional patrols may be assured of frequent

patrols. Such issues may be addressed using methods similar

to those used for distributing costs over a network [8] and for

determining fair traffic policies [7].

V. CONCLUSION

We have presented an efficient method for determining a set

of important patrol routes. Our method aims to provide a tool

that is part of a much larger system for planning patrols. The

input to our method is an edge-weighted graph that represents

a road network, with edge weights representing importance

of the corresponding locations for patrolling purposes. In

addition, our method takes as input a minimum and, optionally,

maximum, route size, along with the number of desired routes.

The output of our method is a set of routes that maximize the

ratio of total edge weight to length, called the density. These

routes are suitable for further analysis based on factors not



modeled by our method. An important feature of our method

is its efficiency, which permits recomputation of important

routes as changing conditions result in changes to the input

edge weights. For example, changes due to a major accident

or other problem can be quickly incorporated. Although, for

concreteness, we presented our work in the context of a road

network, the results have wider applicability. For example, we

may use our methods for determining an efficient boarding

schedule for transit police monitoring a network of subway

trains, to coast-guard vessels patrolling shipping lanes in the

vicinity of a busy harbor, and to hybrid networks composed

of rail and road components.

In continuing work, we hope to extend the nature of both

the input graph and the output routes. For example, we may

wish to enumerate routes that are dense cycles instead of dense

paths. We are also conducting an experimental evaluation of

our method.
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