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Abstract: The recent change in emphasis from reactive to proactive law
enforcement, as evidenced by such concepts as community-oriented polic-
ing, has resulted in the need for tools to support these efforts. While geo-
graphic information systems (GISs) have been very successful at tracking
criminal activity, proactive law enforcement requires systems that antici-
pate the emergence of criminal activity. One such system under develop-
ment at Carnegie Mellon University and the Pittsburgh (PA) Bureau of Po-
lice is an early warning system that incorporates a GIS, previously devel-
oped to track criminal activity, and a relatively new technology — artificial
neural networks — to predict the emergence or "flare ups" of drug hot-spot
areas. The system obtains its input from cell-aggregated GIS-based data,
processes the data with a previously trained artificial neural network and
outputs the results to a choropleth map indicating those areas for which
the network has predicted a relatively high number of 911 calls for service
for drugs. The focus of this paper is to describe how the early warning sys-
tem was developed, and to explain some of the underlying theory behind
neural networks. In addition, the performance of the network is compared
to some of the more traditional geographic forecasting methods.

INTRODUCTION
Computerized mapping has come a long way since the first main-

frame applications (such as SYMAP) produced "maps" on high-speed
line printers that shaded choropleth (or thematic) maps using differ -
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ent combinations of ASCII characters printed one on top of the other.
However, the concept of geographic information systems (GIS) and all
that it implies is still relatively new to researchers and practitioners
alike. In part this is because people are only just beginning to realize
that GIS can be much more than merely an automated mapping
system, and in part because the quality of spatial data contained in a
GIS can be so high that researchers are continuously finding new
uses for it. In fact, it can be a one-stop shopping center for informa-
tion. GIS is indeed an exciting field, especially within the context of
law enforcement.

There is no doubt that GISs have proven themselves to be an in-
valuable tool for law enforcement. Examples of successful uses of GIS
from a research perspective abound for a variety of law enforcement
support functions, such as measuring the geographic displacement of
drug offenders (see, for example, Green, 1993), monitoring the effects
of law enforcement strategies on nuisance bar activity (Cohen et al.,
1993), and point pattern analysis of crime locations (Canter, 1993).
Other examples of more general purpose crime mapping systems for
law enforcement include the Drug Market Analysis Program (DMAP)
effort undertaken in Jersey City, Hartford, San Diego, Pittsburgh and
Kansas City (McEwen and Taxman, 1994; Maltz, 1993), and PA-
LEGIS (Pennsylvania Law Enforcement Geographic Information Sys-
tem), an integrated GIS and police records management system de-
veloped for smaller police departments (Bookser, 1991).

The impact of GIS in law enforcement is further illustrated by the
fact that today virtually all commercially available police record man-
agement and emergency operations systems include a GIS compo-
nent. As police organizations automate their operations and imple-
ment more modern computer systems, taking advantage of advances
in information science such as open-architecture database systems,
enterprise-wide computer applications and ever-increasing micro-
processor and network speeds, more and more information will be-
come available to police officers at the click of a mouse. Moreover, all
of this information will be linked together from various sources and
organized in ways that were previously unheard of. Police investiga-
tors will likely find this wealth of information a boon to their work,
but crime analysts may well find themselves faced with information
overload.

At the same time that police departments are making greater use
of computer technology, they are also undergoing a change in law
enforcement philosophy. Evidence of this change can be seen in the
fact that many departments are implementing community-oriented
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policing (COP) in an effort to emphasize proactive rather than reactive
law enforcement. While the concept of COP is certainly not new (for a
review of early initiatives, see Trojanowicz, 1986), the way in which
information is utilized in COP has changed over the years. In many
cities, desktop personal computers have replaced the daily log for foot
patrol officers, and in some cities the time-honored tradition of a
notebook and pencil has given way to hand-held, pen-based mobile
computers.

The current decade has shown that providing police officers with
automated tools to collect and access information is not a problem.
While they will undoubtedly become more sophisticated, such tools
already exist in many police departments. Given the right amount of
funding, careful planning and proper implementation, there are
abundant technical solutions available to those departments wishing
to automate information gathering and dissemination. Rather, the
challenge in the next decade will be to provide crime analysts and
police administrators with the tools to support proactive law en-
forcement efforts. This, in turn, will require the use of increasingly
sophisticated data analysis methods and statistical techniques.

This chapter addresses one way in which GISs can provide such
tools in the next decade. Specifically, it describes how another rela-
tively new technology — artificial neural networks — was incorpo-
rated into a GIS-based early warning system for street-level drug
markets implemented by the Pittsburgh Bureau of Police as part of
the MAP. The resulting computer system predicts the emergence, or
"flare-ups" of drug "hot-spot" areas. Input for the system is obtained
from cell-aggregated GIS-based data that is processed by a previously
trained artificial neural network. The output is then displayed on a
choropleth map indicating those areas for which a relatively high
number of 911 calls for service for drugs are anticipated.

The chapter proceeds in the following manner. First, the existing
early warning system used by the Pittsburgh Bureau of Police, as well
as some of the pitfalls encountered during its development, is de-
scribed. Second, a brief overview is given of some of the more preva-
lent models used in space-time forecasting. The third section pro-
vides a brief overview of artificial neural networks. Fourth, an artifi-
cial neural network used for space-time forecasting is introduced.
The fifth section presents a case study of predicting flare-ups of 911
calls for service for drugs, and describes how the artificial neural
network was incorporated into the early warning system. In the con-
clusion the chapter is summarized and future work is outlined.
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THE PITTSBURGH DMAP SYSTEM

The Pittsburgh DMAP computer system is a fully integrated GIS
linking a variety of sources of information into a single user interface.
Specifically, these sources consist of 911 calls for service, police inci-
dent and arrest data, property tax and ownership information, liquor
license data, and map sheet coverages from the Pittsburgh-Allegheny
GIS (PAGIS). The map sheets include streets, property parcels,
building footprints, parks, cemeteries, schools, public housing proj-
ects, Census tracts, neighborhoods and police zones.

The DMAP system is designed to provide support for both investi-
gative and administrative police personnel. Users can query the sys-
tem by any geographic area (such as neighborhood or census tract)
or by a single address. Depending on the type of query users can, for
instance, map out police or 911 incidents, determine property owner-
ship, produce reports of incidents involving persons residing at a
particular address, or map geographic displacement of criminal ac-
tivities. One component of DMAP that is of particular interest to this
chapter is an early warning system that allows administrative per-
sonnel to analyze crime pattern trends by geographic area.

Development of the early warning system was possible in part be-
cause of a key feature of GISs: the ability to associate xy coordinates
with the address of an incident. This concept is known as ''geocod-
ing.'' During geocoding, an address is matched against a known data
set (also referred to as an "address coverage") containing the xy coor-
dinates of all addresses located within a particular area. There are
two types of address coverages: point-based and line-based. Line-
based (or street) address coverages are by far the most commonly
used, in part because they are much easier to construct and main-
tain and in part because they are available at low cost from a variety
of sources. Street-address coverages consist of nodes (points in space
that can represent either curves or intersections) and arcs. For ex-
ample, an arc connecting two intersections can represent a street
block. Each arc has a number of attributes associated with it, in-
cluding the street name, street type, street direction, and the left and
right beginning and ending address. Geocoding using line-based ad-
dress coverages proceeds in the following manner: the system locates
the arc that not only shares the same street name, type and direction
of the address to be matched, but where the street number also falls
into the left or right beginning and ending address range. Once the
arc has been located, the xy coordinate of the address is determined
by interpolation between the beginning and ending node of the arc.
For example, if the left address range of an arc is between 100 and
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198, and the street number of the address to be matched is 150, then
the xy coordinate of the matched address will be halfway between the
two nodes.

Point-based address coverages are different in that the xy coordi-
nates of an address are determined not by the street the address is
located on, but some other key identifier such as a building footprint
or the center of a property parcel. Because one building or property
parcel may contain several different addresses, one or more ad-
dresses can share the same xy coordinate. In order to match an ad-
dress, all the system has to do is find an exact match in the address
coverage and retrieve the corresponding xy coordinate. Geocoding
using point-based address coverages is therefore much faster be-
cause the algorithm requires fewer steps. The implementation of a
point-based address coverage is more costly and time-consuming
than line-based address coverages, but yields a far more accurate
data set for geocoding. The Pittsburgh DMAP system uses a point-
based address coverage where the xy coordinates of addresses were
determined using the geographic centers of property parcels. For
each parcel the lot and block number was related to the property tax
file, resulting in one or more valid addresses for each parcel. These
addresses, along with the xy coordinate, were then added to the ad-
dress coverage. The final result contains one record for each valid
address in the City of Pittsburgh.

Problems arise during geocoding when an address cannot be lo-
cated in the address coverage. If this is the case, the data are lost and
cannot be displayed or located on a map. The two most common
causes of unmatched addresses are inaccurate address coverages
and inconsistently spelled street names. In Pittsburgh both of these
causes were encountered. Most GIS software packages have a com-
ponent that allows users to manually select an address from a list of
candidates in the event that an exact match cannot be found. This is
fine when only a few addresses are to be matched, but too time-
consuming when hundreds of thousands of addresses are to be
matched, as is the case in DMAP. As a result, the Pittsburgh DMAP
system utilizes its own geocoding algorithm where addresses are pre-
processed to eliminate spelling inconsistencies and candidates are
automatically selected according to a specific set of rules. Because of
this algorithm DMAP successfully matches about 97% of all ad-
dresses.

The accuracy of geocoding in DMAP means that little information
is lost in the geocoding process. In addition, the geocoding algorithm
ensures that data from various otherwise incompatible sources can
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be consistently collated via the address, resulting in a large data set
that can be aggregated according to any spatial unit.

The early warning system utilizes this data set to provide choro-
pleth maps of changes in criminal activity based either on 911 calls
for service or police incident data for user-selected crime types. Users
choose the time period (for example, changes over the past month) as
well as the areal unit by which they would like to aggregate the data.
The areal units can either be pre-defined, such as by Census tracts
or patrol sectors, or user-defined cells derived by overlaying a grid on
the City of Pittsburgh. Finally, the user chooses the class intervals for
shading the map. These are either calculated automatically according
to standard deviations or frequencies, or defined by the user. The
output of the early warning system is a citywide map that shades ar-
eas according to changes in criminal activity relative to other areas in
the city. Those areas that experienced negative changes are shaded
from light blue to deep blue depending on the relative magnitude of
change ("cold areas"), whereas those with positive changes, or in-
creases, are shaded from light red to deep red ("hot areas"). Users can
also zoom in to hot areas to look at specific addresses or intersections
responsible for the increase in criminal activity.

The early warning system described above was a significant step
ahead in terms of providing police administrators with an automated
tool to analyze changes in spatial crime patterns on a citywide basis.
However, the system does not provide for any predictive capabilities.
As mentioned earlier, police administrators also have a need for tools
allowing them to anticipate changes in criminal activity. Thus, the
following pages outline how the early warning system was modified to
provide space-time forecasts of changes in 911 calls for service for
drugs.

SPATIAL FORECASTING MODELS AND METHODS

Somewhat surprisingly, it was not until the early 1950s that the
first models were developed that took spatial context into considera-
tion, even though temporal context, or time series modeling, was in-
troduced as early as the 1920s (Cliff et al., 1975). Since then geogra-
phers and regional scientists have devised a variety of techniques for
space-time forecasting, many of which are spatial extensions of time-
series models. Anselin (1988) notes that the regional science and ge-
ography literature provides much evidence that the effects of space
are heterogeneous rather than homogeneous. As a result, he argues,
modeling strategies have to account for regional, or local, features.
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A univariate example of space-time models is the Space-Time
Autoregressive model, or STAR (Tobler, 1969). STAR, an extension of
the purely temporal autoregressive model originating with Box and
Jenkins (1970), assumes that the influence of neighboring observa-
tions declines with distance from the current observation according
to a set of pre-defined spatial weights. A related model is the Space-
Time Autoregressive Integrated Moving Average model, which incor-
porates repeated differencing for trend elimination and the exponen-
tial smoothing model (Cliff et al., 1975).

One of the most basic multivariate models that takes into account
local context is the spatially varying parameter model, defined as fol-
lows:

Two such methods are locally weighted regression (see, for exam-
ple, Cassetti, 1982, and Cleveland and Devlin, 1988) and Kriging
(David, 1977; Haining, 1990). Locally weighted regression techniques
require that the weights are specified a priori. This often occurs via
trial and error as an attempt is made to see which set of weights pro-
duces the best fit of the dependent variable. Kriging — or, in the
multivariate case, cokriging — uses an empirically estimated func-
tion, called a variogram, to determine the spatial weighting of data
observations. Both methods assume that the influence of other ob-
servations declines with distance from the current observation.

Model (1) is also often used for exploratory data analysis (Gorr and
Olligschlaeger, 1994): maps of residuals can show undetected spatial
heterogeneity suggesting additional theory or model structure, and
maps of estimated spatially varying parameters are useful in deter-
mining the functional form of parameter variation. This type of ex-
ploratory data analysis is also used in expansion modeling. One ex-
ample is a stepwise regression model using polynomial or other func-
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tions of time and space coordinates that interact with an initial
model's variables (see, for example, Cassetti, 1982 and Cassetti and
Jones, 1992).

Two final examples of estimating spatially varying parameter mod-
els are spatial adaptive filtering (SAF) and weighted spatial adaptive
filtering (WSAF), both of which are based on adaptive filtering origi-
nating with Widrow and Hoff (1960). Foster and Gorr (1986) intro-
duced SAF as an extension of multivariate damped negative feedback
estimation by using a heuristic approach to optimizing individual
damping factors for each (5k in model (1). WSAF was introduced by
Gorr and Olligschlaeger (1994) as an extension of SAF. It incorpo-
rates a pattern recognizer into SAF that reduces an inherent bias
created by applying equal weights to feedback signals from neigh-
boring observations. Based on the magnitude of forecast errors using
the pk of neighboring observations, WSAF automatically assigns ap-
propriate weights to feedback signals: those observations with small
forecast errors receive relatively large weights, whereas those with
larger errors receive smaller weights. The resulting weighting scheme
is similar to those used in time-series combination forecasting (see,
for example, Bates and Granger, 1969 and Clemen, 1989).

At this point it is important to note that both SAF and WSAF use a
feedback scheme very similar to the Widrow-Hoff (1960) rule and the
perceptron convergence procedure originating with Minsky and Pa-
pert (1969). In addition, the scheme resembles the generalized Delta
Rule employed in estimating feed-forward artificial neural networks
with backpropagation (Rumelhart and McClelland, 1988). The signifi-
cance of this will become apparent in a later section.

All of the examples discussed above assume that the distribution
of data fits a certain functional form. As practitioners know, this is
only very rarely if ever the case, especially when it comes to crime
data. Second, with the exception of WSAF and Kriging, the functional
form of the spatial variation of parameters as well as the weights de-
fining the influence of neighboring observations must be specified a
priori. From a practical viewpoint, this requires much exploratory
analysis and experimentation with different model specifications in
order to arrive at a model with good predictive capabilities. WSAF,
while generally more efficient at automatically detecting spatial pat-
terns, is very sensitive to the heuristics used in determining optimal
damping factors and sometimes tends to overfit the model. In addi-
tion, it is more of an exploratory technique rather than a predictive
one.
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Law enforcement practitioners rarely have the time or the exper-
tise to arrive at predictions of criminal activity using the above mod-
els. Rather, they require techniques that provide reasonably accurate
forecasts of crime patterns with a minimum of user intervention, with
results being displayed in such a way that they are easy to under-
stand and intuitive. In addition, the forecasting models used to make
predictions must be adaptive, i.e., they must be able to automatically
recognize and adapt to changes in the functional form underlying
spatio-temporal crime patterns. For example, drug dealers are con-
stantly changing their method of operation in response to various law
enforcement efforts as well as changes in the nature of their busi-
ness. This, in turn, leads to changes in behavior as evidenced, for
example, by the geographic displacement of drug markets. One tech-
nique that could accomplish the above-mentioned goals are artificial
neural networks.

A BRIEF OVERVIEW OF ARTIFICIAL NEURAL
NETWORKS

As with many newer technologies, there is still much confusion
and skepticism among applied researchers over what artificial neural
networks are and how useful they can be. There is confusion because
there are so many different types of artificial neural networks (also
known as "connectionist" or "parallel distributed processing" models)
and because little, if anything is known about their statistical prop-
erties. On the one hand, artificial neural networks seem to be able to
do things that no other statistical method can do, but on the other no
one quite understands how and why they can do it. Skeptics argue
that, like expert systems, neural networks are just another much-
ballyhooed technology that may have some usefulness for a small set
of well-defined applications but that they are not quite the greatest
thing since sliced bread that their proponents make them out to be.

Exactly how widespread the use of neural networks will be re-
mains to be seen. However, some very important developments have
recently occurred in the field that show great promise for a wide
range of potential applications. All indications are that research into
neural networks is not going to be as short-lived as some people be-
lieve. The current interest in neural networks actually represents the
second wave of research into the area. The first wave occurred after
McCulloch and Pitts (1943) introduced a simple form of neurons as
an attempt to emulate biological neurons. The authors envisioned
using these mathematical neurons as components that could perform
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computational tasks in electronic circuits (Kroese and Van der
Smagt, 1993). After two decades or so of research by a variety of
authors, Minsky and Papert (1969) showed that perceptrons (their
term for neural networks) had a number of deficiencies that pre-
vented their use for general purposes. One of the most important de-
ficiencies was the fact that they were unable to perform non-linear
calculations. Consequently, many researchers left the field, although
some key authors continued their work (Rumelhart and McClelland,
1988).

A resurgence of interest in the field occurred when Rumelhart and
McClelland (1988) published their two volume set Parallel Distributed
Processing. It consisted of a series of articles written by the PDP Re-
search Group, a group of researchers who had continued to work on
neural networks during the 1970s and 1980s. One of the chapters
that is of particular interest to this paper outlined an approach in-
corporating multiple layers of neurons and nonlinear signal process-
ing that allowed perceptron-like neural networks to estimate non-
linear functions. Since then there has been a remarkable amount of
research in the field, including efforts at using neural networks for
prediction (see, for example, Poli and Jones, 1994, and White, 1988).

Due to the large variety of artificial neural networks, it is beyond
the scope of this paper to discuss even a representative sample (for
an excellent introduction to the topic, see Rumelhart and McClelland,
1988 or Carpenter and Grossberg, 1991). However, one neural net-
work architecture — feed-forward networks with backpropagation —
will be outlined because it forms the basis of the neural net archi-
tecture of the early warning system described in the next section.
Multi-layer feed-forward networks with backpropagation are probably
the most studied type of artificial neural network, and are essentially
a non-linear extension of Minsky and Papert's (1969) perceptrons.

Regardless of type, all artificial neural networks consist of a num-
ber of processing units that send signals to one another via a large
number of weighted connections (Kroese and Van der Smagt, 1993).
The main difference between network architectures is how signals are
processed by each unit and the way in which the weights on each
connection are updated. The internal representation of a processing
unit in a backpropagation network is shown in Figure 1.
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Figure 1: A Neural Processing Unit

Each processing unit, via weighted connections, receives input in
the form of the outputs (activations) from the processing units in the
previous layer. These outputs are multiplied by the weight on each
connection, and, together with a bias, are summed to form the net
input for the processing unit. More formally:



324 — Andreas M. Olligschlaeger

Figure 2: A Multilayer Feed-forward Network

Figure 2 shows an example of a simple multi-layer neural network
architecture. The network consists of three layers: input, output and
hidden. Each layer consists of a number of units (neurons) that proc-
ess information passed to them by units in the layer below, as de-
scribed in (2) and (3). The input layer has four nodes and the hidden
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layer has three. In this example there is only one output node, al-
though it possible to have more than one. In feed-forward networks
information is input into each node, processed, and then passed on
to each node in the layer above. In the case of an output node, infor-
mation is simply passed out of the network.

The goal is to map the input units to a desired output similar to
the way in which the dependent variable is a function of the inde-
pendent variables in regression analysis. The difference is that re-
gression analysis uses linear direct mapping whereas multi-layer
feed-forward networks use non-linear indirect mapping. The hidden
layer creates an internal representation of the patterns to be mapped.
The internal representation is then mapped to the output unit. It is
the hidden layer, along with the use of a non-linear activation func-
tion, that allows multi-layer networks to map far more complex func-
tions than simple direct input-to-output unit mappings.

Feed-forward networks with backpropagation "learn" to map the
input units to the output units by adjusting the weights on the con-
nections in response to error signals transmitted back through the
network. During training, the network is presented with each input
pattern and computes the activation of the output unit(s) using the
current network weight structure (the weights are initialized ran-
domly prior to training). The difference between the output of the
network and the target mapping constitutes the error signal. This
signal is then propagated back through the network via the process-
ing units, and their connections and the weights are updated. The
goal is to continually update the weights until the sum of all error
signals is minimized.

In backpropagation networks, weight updates are performed using
the generalized delta rule derived by Rumelhart et al. (1988) from the
perceptron convergence procedure originating with Minsky and Pa-
pert (1969). The latter, in turn, is a variation of the delta rule pro-
posed by Widrow and Hoff (1960). The generalized delta rule can be
summarized in three equations (for a formal derivation of the gener-
alized delta rule, see Kroese and Van der Smagt, 1993 or Rumelhart
et al., 1988). The first specifies that the weight change should be pro-
portional to the product of the error signal sent to a receiving unit
along a connection, and the activation of the sending unit. More for-
mally,
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The generalized delta rule implements a gradient descent in the error
term. Training of the network proceeds by repeatedly presenting all
input patterns and adjusting the weights until the sum of all errors is
minimized, i.e., the network converges to a solution. In this respect, it
is crucial to select a learning rate that during training will allow the
network to iterate toward a true global minimum rather than getting
stuck in local minima. Too-large learning rates can lead to oscilla-
tions between local minima, whereas small learning rates can require
hundreds of thousands of iterations to converge. While it is theoreti-
cally possible that even with small learning rates the network will
converge to a local minimum, empirical evidence suggests that this is
rarely the case (Weiss and Kulikowski, 1991). One way to avoid this
is to train the network several times with different random initializa-
tions of the weights, and to compare the results.

When implementing a backpropagation network, there are a num-
ber of factors to take into account. For example, the derivation of the
generalized delta rule assumes that the network weights are updated
each epoch, i.e., the error signal used in equation (4) is taken to be
the sum of all error signals computed for each input pattern in the
training data set. It has been shown that in some cases, updating the
weights after each input pattern is presented can yield better results,
i.e., the total mean squared error is smaller (Weiss and Kulikowski,
1991).

A further consideration is to determine how many processing
units to include in the hidden layer. It appears that the number is
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directly related to the complexity of the function to be estimated
(Hecht-Nielsen, 1990). Since in empirical applications the functional
form of the input-to-output unit mapping is rarely known, the num-
ber of processing units has to be determined by trial and error. Too
few hidden units may produce sub-optimal results, whereas too
many may result in overfitting, i.e., the network simply "memorizes"
all of the input and output patterns and yields zero error. While in
some cases this may be desirable it is inappropriate for forecasting.
One commonly used approach to determine the correct number of
hidden units is to use about two thirds or three-quarters of the sam-
ple data for network training, and to keep adding hidden units until
the network no longer generalizes well. Network generalization refers
to how well the network performs with "unseen" data, i.e., data that
was not used in training. If the performance is significantly worse,
then the network has overfitted the data.

Depending on the number of weights present in the network and
the type of architecture, feed-forward networks with backpropagation
can require a large number of data points to train. If the sample size
is not large enough, the network once again will simply "memorize"
the input-to-output mappings and overfit the data. This can pose a
problem for spatial data. Often only annual data are available at the
Census tract level, so that even with a relatively large study area (say,
on the order of 150 Census tracts) and 10 years worth of data the
total number of observations would only be 1,500. For social science
data this is typically not enough to train a neural network without
overfitting the data. Depending on the complexity of the function to
be estimated, neural networks can require tens of thousands of ob-
servations. As will be demonstrated in a later section, GISs allow for
the production of very large data sets due to the nature in which data
is stored and the manner in which it can be queried.

Depending on the sample size and the size of the network, the
task of determining the ideal network structure for a specific applica-
tion can prove to be very time-consuming. However, artificial intelli-
gence algorithms do exist that can automatically design and optimize
application-specific network structures. The genetic algorithm due to
Holland (1975), which "evolves" the network architecture based on a
"survival of the fittest" scheme, has been used quite successfully (see,
for example, Harp et al., 1990 and Rogers, 1990). Regardless of how
the network architecture is optimized, once this has been accom-
plished the network can readily adapt to changes in the functional
form of the input-to-output unit mapping. In a time series, for exam-
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pie, the network is simply retrained as new data are collected using
the previous network weight structure as initial weights.

Neural networks have one drawback in their potential as a spatial
modeling tool, however. The algorithm described above requires that
the number of input units is the same for all input-to-output map-
pings, i.e., there can be no missing variables in the sample data.
Many spatial models (such as the Spatial Adaptive Filter discussed in
the previous section) use a contiguity matrix to determine the neigh-
borhood of the current observation. A contiguity matrix is an n by n
dimensional matrix of ones and zeroes, where n is the total number
of geographic regions in the study area. If a region is a neighbor of
the current observation, then the matrix entry for those two regions
has a value of one. If the two regions are not neighbors, the matrix
entry has a value of zero. One of the most common geographic units
used to estimate spatial models are Census tracts. The problem with
using Census tracts as a geographic basis for spatial modeling using
neural networks is that each Census tract has an inconsistent num-
ber of neighbors. Including neighboring observations as input units,
as is most often the case in spatial modeling methods violates the
rule that the number of input units must be the same for all obser-
vations. This problem will be addressed and a solution to it provided
in the next section.

Feed-forward networks with backpropagation have some very im-
portant properties that make them suitable for the kind of modeling
discussed in the previous section. First, they do not require that the
functional form of the input-to-output unit mapping is specified a
priori. The theoretical underpinnings of many statistical models, on
the other hand, require that the data sample and the input-to-output
mapping have a certain functional form. For example, in Kriging or
Cokriging the functional form of parameter variation must be speci-
fied a priori. While there are certainly many types of statistical mod-
els with different assumptions as to the distribution of data or pa-
rameters, they often require much exploratory analysis and experi-
mentation with different functional dependencies before satisfactory
results are achieved.

A second important discovery with regard to the nature of back-
propagation networks was made by Hornik et al. (1989), who proved
mathematically that, provided sufficiently many hidden units are
available, multi-layer feed-forward networks with backpropagation
form a class of universal approximators capable of estimating any
functional form to any desired degree of accuracy.
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A NEURAL NETWORK ARCHITECTURE FOR SPACE-
TIME FORECASTS

In summarizing the previous sections it is possible to define the
following requirements for a neural network architecture for space-
time forecasting:

(1) The number of input units must be constant across all input-
output mappings, i.e., each observation must have an equal
number of observations in its neighborhood.

(2) The size of the data set must be sufficiently large to train the
network without overfitting, or "memorizing," the input-to-
output mappings.

(3) The number of hidden processing units must be large enough
to facilitate an internal representation of the input-to-output
mappings, but not too large to cause overfitting of the data.

(4) The network must be able to generalize, i.e., the weight
structure arrived at during training should perform reasona-
bly well on data that were not used during training.

(5) The network should not get stuck in a local minimum, i.e.,
should perform equally well with different random initializa-
tions of the connection weights.

The idea for a neural network architecture for space-time fore-
casting that satisfies the above criteria was originally conceived when
the author was conducting research on cellular automata and chaos
theory. Chaos theory, like artificial neural networks, has been the
focus of much attention in recent years. It basically involves the
study of phenomena or systems that are very sensitive to initial con-
ditions. In chaotic systems or equations minute changes in parame-
ters can result in very different outcomes — ranging from long-term
stability to apparently random and unpredictable chaotic behavior
(for an excellent introduction to chaos theory, see Schroeder, 1991).
Some real-world examples of chaotic systems include weather pat-
terns, neurological and cardiac activity, and the stock market. Chaos
theory postulates that although chaotic systems seem to display to-
tally random and unpredictable behavior, they are actually following
strict mathematical rules that can be derived and studied (Pickover,
1990). These rules can range in sophistication from simple decision
trees to complex non-linear functions.

Cellular automata are a specific type of chaotic system. They differ
from other chaotic systems in that they act on discrete space or grids
rather than a continuous medium such as a surface. In a cellular
automata machine, each frame (representing all cells in a population)
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is replaced by a new one according to a specific "recipe," or rule, in
the next epoch (Toffoli and Margolus, 1987). A key determinant of
cellular automata rules is how each cell is influenced by neighboring
cells. Consider the example given below.

Figure 3 shows three epochs in the life of a population of cells oc-
cupying a 9 x 9 grid. An empty square represents a dead cell,
whereas a dotted square represents a live cell. Upon initial examina-
tion of the three epochs it appears that cells are born and die ran-
domly. As it turns out, however, this is not the case. The behavior of
the cell population from one epoch to the other actually follows a very
simple set of rules introduced by mathematician John Conway in his
game of "life" (Gardner, 1970). Assuming that the "neighborhood" of a
cell consists of all immediately adjacent cells, the rules are as follows:

(1) A live cell will only stay alive if it has two or three living neigh-
bors. Otherwise it will die of either "overcrowding" or "loneli-
ness."

(2) A dead cell will come to life if it has exactly three living neigh-
bors. Otherwise it remains dead.

The above example can easily be expressed in terms of a neural
network. Designate the target output of the network as the state of a
cell in the next epoch (where the target output is one if the cell is
alive and zero otherwise). The next step is to determine the input
units. Since the rules of the game consider the state of all adjacent
cells, as well of the current observation, we will need a total of nine
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input units representing a nine-cell square with the current observa-
tion being in the middle. If the current observation is located at the
edge of the grid then all neighbors not on the grid — i.e., "missing"
neighbors — are assumed to have a value of zero. Incidentally, this
definition of a neighborhood is identical to that used in spatial adap-
tive filtering and weighted spatial adaptive filtering outlined earlier
(see Gorr and Olligschlaeger, 1994). However, in the original Game of
Life, cells are assumed to "wrap around" to the other edge of the grid
(see Toffoli and Margolus, 1987). The mapping of the input-to-output
units is a simple binary-to-binary mapping, i.e., a combination of
nine zeros and ones map to either a single zero or a single one. If we
assign three hidden units to the network the architecture would look
like that in Figure 4.

Figure 4: Game of Life Neural Network

The neural net architecture in Figure 4 was in fact trained to
"learn" the rules of the Game of Life when the author was first ex-



332 — Andreas M. Olligschlaeger

ploring the idea of using neural networks for space-time modeling.
The algorithm used in training centered the network on each obser-
vation, and used the input mappings of the nine cells in the neigh-
borhood to arrive at the output of the network for the current obser-
vation in the next epoch. The difference between the target output
and the actual output of the network constituted the error signal.
Thus, for each epoch (or time period) the number of patterns pre-
sented to the network is equal to the number of cells in the grid. The
total number of training patterns is equal to the number of cells in
the grid, multiplied by the number of epochs in the game presented
to the network.

Presenting the results of the network outlined above would be be-
yond the scope of this paper. Suffice it to say, however, that the net-
work was able to learn the rules of the Game of Life perfectly, i.e.,
without error. Moreover, the network performed flawlessly even when
shown patterns that were not used during training: different random
initializations of the grid cells had no effect on the performance of the
network. In addition, it was able to predict successive generations of
cells ad infinitum, requiring only the first epoch of randomly initial-
ized cells to do so. This indicates that the network is very robust and
able to generalize well, at least for this particular problem.

The rules of the Game of Life are certainly very simple. In the real
world, rules governing space-time phenomena are far more complex.
However, as demonstrated earlier, feed-forward networks with back-
propagation are capable of "learning" extremely complex input-to-
output mappings. In addition, the inputs or outputs need not be bi-
nary; they can take on any functional form (continuous or discon-
tinuous) and do not have to fall into the [0,1] range. Finally, there is
no reason why each cell in the neighborhood need only have one in-
put unit. The rules can depend on more than one input that is
unique to each cell.

It should therefore be possible to extend the neural network ar-
chitecture outlined in Figure 4 in order to accommodate a variation of
model (1). If for the moment we assume that we can obtain grid-
based data for a geographical area, then using the same definition of
a neighborhood as that for the Game of Life we can rewrite (1) as fol-
lows:
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where p is the number of independent variables and j represents
each observation (1,2...8) in the neighborhood. Model (7) assumes
that the parameters are spatially constant. For the spatially varying
parameter case we can write:

where i and m are indexes in C, the context of spatial parameter
variation. Therefore, the only difference between (7) and (8) is that in
model (8) each cell has its own set of parameters. Note that models
(7) and (8) also assume that the dependent variable is a linear func-
tion of the independent variables. Feed-forward networks with back-
propagation do not require this assumption since functional depend-
encies do not need to be specified a priori.

A neural network architecture to estimate models (7) and (8)
would look very similar to that presented in Figure 4. The only differ-
ence is that the number of input units for each cell is equal to p, and
the number of hidden processing units will presumably be greater.
For the spatially varying case, each cell would have its own unique
set of input-to-hidden unit connections along with a unique set of
weights. The hidden-to-output unit weight structure would be the
same for all observations.

The neighborhood defined above satisfies requirement 1 outlined
earlier, that the number of input units must be constant for all input-
to-output mappings. Requirement 3 is usually determined via trial
and error, i.e., the number of hidden units is increased over repeated
training sessions until the network performance does not signifi-
cantly improve. The fourth requirement can be determined by com-
paring the performance of the network to patterns previously unseen,
i.e., not used during training. Finally, requirement 5 can be satisfied
by repeatedly training the network using the same number of hidden
units but different random initializations of the weight structure, and
comparing the results. Thus requirements 3, 4 and 5 are satisfied
during the optimization of the network, i.e., by repeated training and
comparing of results.

What remains to be determined, however, is how to obtain not
only grid-based data but also a large enough number of observations
to train the network (requirements 1 and 2). This is where GIS and
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geocoding, discussed in section 2, come into the picture. Recall that
one of the main advantages of GIS-based data is that it can be que-
ried according to any geographic area, including user-defined ones. If
we create a grid-based polygon coverage and overlay it on a study
area such as a city, then we can easily determine the number of data
points that fall within each grid cell. In addition, we can break down
the data further according to other characteristics. For example, with
911 or police data we can count the frequencies of drug calls for
service, robbery arrests or burglaries. In addition, if property owner-
ship data is geocoded by address, then for each grid cell we can also
determine variables such as the average assessed value of homes, the
proportion of commercial properties, etc. Thus requirement 1 is also
satisfied.

The final requirement that still needs to be satisfied is the number
of data points. If we have four years' worth of annual data and 400
grid cells, we would have 1,600 observations distributed over four
epochs. This is not enough to train a neural network. However, if the
geocoded data points also have a date associated with them, then we
can break down the data even further into time slices such as
months or weeks and thus increase the total number of data points
considerably. For example, four years' worth of monthly data and 400
grid cells would yield 19,200 observations distributed over 48 epochs.
This would conceivably be enough. Thus requirement 2 would also be
satisfied.

The next section describes how the neural network architecture
discussed in this section was used and trained to create an early
warning system for 911 drug calls for service. The data for the early
warning system was created using the DMAP GIS outlined in the sec-
ond section.

A NEURAL NETWORK-BASED EARLY WARNING SYSTEM
FOR 911 DRUG CALLS FOR SERVICE

Like many other cities of its size, Pittsburgh experienced a marked
increase in street-level drug trafficking during the late 1980s and
early 1990s as a result of the crack epidemic. Although crack cocaine
use was already prevalent in larger cities such as Los Angeles, Detroit
and New York before that time, historical evidence shows that it gen-
erally takes a few years for new illicit drugs to disperse to smaller
cities that are not ports of entry for drug smugglers. Prior to the ap-
pearance of crack cocaine, street-level drug dealing in Pittsburgh was
largely confined to two areas that specialized primarily in heroin and



Artificial Neural Networks and Crime Mapping — 335

marijuana. Other sporadic areas of open-air drug dealing did exist,
but were mainly limited to the sale of prescription drugs such as
painkillers and the "Yuppie" drug powder cocaine.

In the summer of 1991, Pittsburgh also experienced a surge in
gang-related violence. While initially most gangs were merely loosely
organized groups of adolescents, experienced gang members from
larger cities quickly attempted to gain a foothold in what they per-
ceived as "virgin territory" for crack cocaine sales. Street-level drug
markets in other major cities were already saturated by dealers, and
there was little opportunity for entry into a market tightly controlled
by gangs. Pittsburgh, on the other hand, was still a "free-for-all": de-
mand was greater than supply. Thus, at least a part of the increase
in violence can be attributed to street gangs setting up and defending
"turfs" within which they conducted their illicit drug trade.

In reacting to the increase in street-level drug dealing, the Pitts-
burgh Bureau of Police used disruptive enforcement strategies that
were proven highly successful in other cities: reverse stings, under-
cover buys, on-sight arrests of drug dealers after having observed
illicit transactions and placing community-oriented police officers in
plain view of established drug hot spots. These strategies were used
because street-level drug dealing is widely regarded as a weak link in
the chain: once a street market has been disrupted it is very difficult
for dealers to relocate (Cohen et al., 1993). They are unable to adver-
tise their new location, and are severely restricted in establishing new
ones because they might infringe upon turfs already claimed by other
drug dealers. However, there were a few instances where new hot
spots did eventually surface.

While DMAP performed quite well at tracking the geographic dis-
placement of drug dealers via its ability to plot the locations and fre-
quencies of the number of drug calls for service and drug arrests, it
did not perform as well at identifying emerging drug markets. The
reason for this is twofold: first, police officers rarely make arrests in
areas in which they are unaware that street-level drug dealing is go-
ing on unless they happen to stumble upon a transaction. Street
sweeps tend to concentrate on known drug markets. Second, resi-
dents of areas in which street-level drug dealing is a new phenome-
non frequently are unaware of what is going on. They initially do not
perceive the activity as drug dealing. Rather, they tend to notice an
increase in the level of crimes associated with street-level drug deal-
ing such as robberies, burglaries and assaults. Thus there is a lag
between the time a drug market has established itself and when resi-
dents begin to make drug-related calls for service.
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An early warning system for emerging street-level drug markets
must therefore be able to predict drug calls for service based on fac-
tors other than the level of drug calls for service in previous time pe-
riods. Based on the results of previous work and the availability of
data from DMAP, it was decided to use three types of calls for service
as indicators of emerging drug activity: weapon-related calls (shots
fired, person shot, person with a gun, etc.), robbery calls and as-
saults-related calls. Cohen et al. (1993) showed that ecological factors
such as the proportion of commercial properties in an area are im-
portant contributors to the level of drug calls for service. Commercial
areas, especially older ones, lend themselves more to open-air drug
dealing because of factors such as the relative lack of population out-
side of business hours (there are fewer residents to observe drug
dealing). Thus the proportion of residential and commercial proper-
ties were included as indicator variables. Open-air drug dealing is a
seasonal phenomenon: in the winter months drug dealers tend to
stay inside not only because it is cold, but also because fewer people
are on the streets and they become more visible. A seasonality index
was therefore also included.

The data for the early warning system were obtained by superim-
posing a grid on the area of the city of Pittsburgh (see Figure 5), and
aggregating data for each grid cell. The cells are 2,150 feet square,
resulting in a total number of 445 cells. It was important not to make
the cells too small. Otherwise, only few cells would have more than
one or two calls for service, while cells that were too large would have
resulted in too few data points for neural net modeling.

Call-for-service data were obtained by counting the number of
calls per month within each cell using the xy coordinates of the geo-
coded locations. The data spanned the years 1990 to 1992, resulting
in 35 months' worth of data (December 1992 could not be used since
there was no value for the number of drug-related calls for service in
January 1993). With 445 cells, the total number of data points was
therefore 15,575. The relative proportions of commercial and resi-
dential properties were arrived at by relating property ownership in-
formation to parcel polygons via the lot and block number. The xy
coordinates of the geographic center of a parcel were then used to
determine which grid cell a particular property falls into. The zoning
classification for each property provided the basis for the relative fre-
quencies. Finally, the seasonal index was arrived at by assigning val-
ues between 0.1 and 0.9 in equal increments to each month, where a
value of 0.9 was assigned to June and July and 0.1 to December and
January.
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Figure 5: EWS Tile Structure vs. 1990 Census Tracts

Table 1: Annual Total Number of Calls for Service

Table 1 shows the total number of calls for service, by year, for
each of the four nature codes used in this study. Notice the remark-
able increase in the number of weapon-related calls for service of al-
most 100% over three years. The number of drug- and robbery-
related calls for service also increased; only assaults showed a de-
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cline. Figure 6 shows the number of calls for each nature code bro-
ken down by month. The seasonal variation is quite noticeable, espe-
cially for drugs, weapons and assaults. The figure also shows how,
with the exception of assaults, most of the increase in the number of
calls for service is accounted for in the summer months.

Using the data described above, three methods were employed to
estimate the one-step-ahead forecasting model specified in equations
(7) and (8). Ordinary least squares regression with six independent
variables for each cell in the neighborhood and a neural network with
an architecture similar to that shown in Figure 4 were used to esti-
mate model (7). The only difference between the network shown in
Figure 4 and that used to estimate (7) was that each cell in the
neighborhood had six input units instead of just one, and the num-
ber of hidden units was nine instead of three. Model (8) was esti-
mated using a neural network with spatially varying input-to-hidden
unit weights. In other words, each cell had its own unique set of
weights between the input and hidden layers. The neural network
with spatially varying weights also had six input units per cell and
nine hidden units.

Both neural networks were estimated using a value of 0.001 for
the learning rate. In order to determine whether the neural networks
were overfitting the data and to compare the robustness of each
methodology, only two years' worth of data (1990 and 1991) were
used to estimate the regression parameters and to train the networks
(the training data set). The 1992 data were used to test how well each
method performed on data not used during training or for estimation
(the unseen data set). The program utilized to estimate the neural
networks was custom written using the C programming language,
and was run on a Sun Microsystems Sparc 20 workstation with 128
Megabytes of RAM. In order to limit the amount of computer time
used, the number of iterations was limited to 15,000. In spite of the
relatively powerful hardware and code optimization techniques, it
took between three and six days for each network to either converge
or reach the limit of 15,000 iterations.

Each network architecture was estimated four times with different
random initializations of the weights in order to determine whether
the results were consistent and the networks were not stuck in a lo-
cal minimum. This was indeed the case. For each network architec-
ture and in all four replications the residual sum of squared errors
differed by no more than 0.5%.

Table 2 shows a comparison of the results of the three methodolo-
gies. For reasons of brevity, the estimated regression parameters (of
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Figure 6: Monthly Calls for Service

Table 2: Performance Comparison of
Forecasting Methods

which there were 47) are not presented and only one replication of
each of the network architectures is shown. The constant weight ver-
sion of the neural network took 9,447 iterations to converge to a
minimum, whereas the varying weight version was stopped at 15,000
iterations. On the training data set, the regression model and the
constant weight network architecture performed about the same
while the varying weight architecture did significantly better.

The differences in performance were more pronounced when the
estimated parameters and weights were used on the unseen data set.
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The fit of the regression model dropped sharply, from an r square of
.4185 to .3457, while that of both network architectures only did so
very slightly. This is a strong indicator, although by no means statis-
tical proof, that neural networks are a robust and consistent spatial
forecasting methodology. The constant weight architecture performed
15.2% better than regression on the unseen data set, whereas the
varying weight network outperformed regression by 54.1%. This is a
highly significant difference.

Figures 7 through 10 are choropleth maps of actual and predicted
drug calls for service, by grid cell, for the month of August 1992. This
month is part of the unseen data set. Unfortunately, some of the de-
tail on the maps is lost due to the lack of color (black-and-white cho-
ropleth maps allow for fewer class intervals; color maps show the
differences to be more pronounced). It is nevertheless clear that the
neural network architecture with spatially varying weights more ac-
curately predicts hot spots of drug activity than the other two meth-
ods.

In looking at the map of actual calls for service it is apparent that
most cells are zero, i.e., had no drug calls for service during the
month of August 1992. Notice how both the regression and the con-
stant weight models tend to perform relatively poorly on those cells
with no calls. Table 3 shows the mean absolute percent forecast error
for all cells and for those with at least one drug call for service. All
methods tend to perform better on non-zero cells. However, the dif-
ference in performance is much less pronounced for the neural net-
work with spatially varying weights. Finally, both neural network
models perform better than regression for both zero and non-zero
cells. Again, this is highly significant: the mean absolute percent er-
ror is often viewed by forecasters to be more indicative of a model's
forecasting capability than the r squared.

Table 3: Mean Absolute Percent Forecast Error on
Unseen Data Set
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CONCLUSION

The results described in the previous section are very encourag-
ing. Both neural network architectures performed at least as well in
terms of model fit as a fairly complex ordinary least squares regres-
sion model, and, in one case, significantly better. In both cases artifi-
cial neural networks appear to be more robust at estimating forecasts
than regression. One disadvantage of neural networks is that there
currently are no tests of statistical significance for the estimated
weight structures. However, if the main goal of a model is to provide
good forecasts rather than to analyze relationships between depend-
ent and independent variables, then this should not be an issue.

Producing the data set, estimating the neural networks and map-
ping the results took a lot of computing power. The reader should not
be discouraged by this fact. While the average desktop computer in
use today does not have the computing capabilities of the hardware
employed in this study, recent advances in computer technology indi-
cate that this will change in the very near future. For example, the
code used for the neural networks was developed on a now five-year-
old Sun Microsystems Sparc 2 workstation with only 32 megabytes of
RAM. At the time it was purchased the Sparc 2 was one of the fastest
workstations commercially available, at a cost of around $25,000. In
contrast, a high-end Pentium PC available for about $4,000 today is
two or three times faster than the Sparc 2.

The early warning system described in this study represents only
a first attempt at using artificial neural networks for GIS-based
space-time forecasting. As far as neural networks are concerned the
algorithm used is a fairly simple one. In developing the algorithm, the
primary focus was on adapting existing neural network technology to
work with spatial data and to simply see if it would work. However,
the fact that even two fairly simple artificial neural network algo-
rithms are able to outperform a fairly complex statistical model is
highly significant. Certainly more work remains to be done in order to
determine whether this is also true for other data sets. Rigorous
testing with Monte Carlo data would also provide more insight.

A further next step is to employ some of the recent advances made
by researchers in other areas of neural network applications. For ex-
ample, there are many ways in which feed-forward networks with
backpropagation can be modified to converge more quickly to a solu-
tion. An additional improvement would be to employ genetic algo-
rithms to develop self-optimizing network architectures.

Finally, there are a variety of types of neural networks, many of
which can potentially be adapted for spatial modeling and integration
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into GIS. In addition, forecasting is only one of countless ways in
which GIS can be used for modeling. Exploring and improving the
ways in which neural networks can be applied to GIS promises to be
an exciting field in the years to come.
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