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Abstract 

 
 
Tracking signals are widely used in industry to monitor inventory and sales 

demand. These signals automatically and quickly detect departures in product 

demand, such as step jumps and outliers, from “business-as-usual”.  This paper 

explores the application of tracking signals for use in crime mapping to 

automatically identify areas that are experiencing changes in crime patterns and 

thus may need police intervention..  Detecting such changes through visual 

examination of time series plots, while effective, creates too large a work load for 

crime analysts, easily on the order of 1,000 time series per month for medium-

sized cities.  We demonstrate the so-called smoothed-error-term tracking signal 

and carry out an exploratory validation on 10 grid cells for Pittsburgh, 

Pennsylvania.  Underlying the tracking signal is an extrapolative forecast that 

serves as the counterfactual basis of comparison.  The approach to validation is 

based on the assumption that we wish tracking signal behavior to match 

decisions made by crime analysts on identifying crime pattern changes.  We 

present tracking signals in the context of crime early warning systems that 

provide wide area scanning for crime pattern changes and detailed drill-down 

maps for crime analysis.  Based on preliminary results, the tracking signal is a 

promising tool for crime analysts.   
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INTRODUCTION 

 Police know the current crime patterns in their jurisdictions and 

accordingly allocate manpower to precincts and shifts, target patrols to hot spots, 

and take other tactical actions.  What is less well known to police is how crime 

patterns are changing, so that police can reallocate manpower in response to 

changes.  We learned this lesson in the early 1990s when we built a crime 

mapping system for the Pittsburgh, Pennsylvania Bureau of Police under a Drug 

Market Analysis Program (DMAP) grant funded by the National Institute of 

Justice.  Many times our DMAP crime mapping system detected enforcement-

induced displacement of street-level drug dealing before narcotics detectives 

were able to do so.  Follow-up surveillance of new drug dealing locations 

detected by our system always proved the maps to be right.   

From this experience we learned the value of building crime early warning 

system (CEWS) maps.   These maps display crime changes to provide a 

jurisdiction-wide scan for areas needing changes in tactical deployment of police.  

Used on an interactive basis in a geographic information system, the maps 

provide drill-down to areas of high change to provide detailed, diagnostic 

information.  We provide example maps below, but before proceeding to them, it 

is important to distinguish two types of change: experienced and forecasted 

change.   

Experienced change is the sort mentioned above, which has the objective 

of quickly detecting any sort of crime innovation (departures from business-as-

usual crime patterns), such as crime displacement in response to enforcement.  
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Underlying analytic problems are 1) to provide counterfactual (business as usual) 

forecasts as the basis of comparison for the most recent historical crime data and 

2) to sort out true pattern changes from random variations.  More is on these 

issues below.  Detecting experienced change is a major activity in Comstat 

meetings (see Henry and Bratton 2002)1.   

The second type of change - not the subject of this chapter - is forecasted 

change, which provides some capacity for crime prevention.  Recently there has 

been success on developing crime forecasting as an applied research field (e.g., 

see Gorr and Harries, 2003 which introduces a special section on crime 

forecasting in the International Journal of Forecasting).  Extrapolation of crime 

seasonality and time trend one month ahead have proven to be accurate enough 

for use in tactical deployment given adequately high crime rates in areas 

investigated (Gorr, Olligschlaeger, and Thomson 2003).   

Our purpose in this paper is to introduce and examine tracking signals as 

a potential tool for crime analysts for automatically detecting crime innovations.  

We undertake an exploratory empirical validation of one of the best tracking 

signals.  We have not seen any validation studies in the literature using real data 

such as used here.  All have relied on simulated data with known pattern 

changes for validation.  Instead, we use judges (ourselves) to visually identify 

pattern changes.  The next section provides examples of CEWS maps to provide 

the context for tracking signals (and crime forecasting) as tools for use by crime 

                                            
1 Note that this paper pursues experienced change relative to geographic areas, such as grid 
cells or census tracts.  Another important pattern to establish, as an innovation, may cut across 
several geographic areas and is the identification of a serial criminal.  In this case, analysis 
surrounds the matching of physical descriptions and modus operandi of perpetrators. 
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analysts in mapping crimes.  The third section makes the case that an automated 

approach is needed to detect experienced crime pattern changes.  The fourth 

section of this chapter briefly reviews tracking signals.  Following that is a section 

on our research  design for validation, followed by a section on results, and then 

a conclusion. 

 

Crime Early Warning System Maps 

Next, we provide examples of CEWS maps.  Such maps appear similar in 

format whether using experienced or forecasted change.  Thus while we do not 

have good example maps for experienced change at this time, the ones provided 

for forecasted change next are representative of change maps in general. 

Figure 1 is a CEWS map for Pittsburgh, Pennsylvania displaying one-

month-ahead crime forecasts where the areas are uniform grid cells 4,000 feet 

on a side (Gorr, Olligschlaeger, and Thomson 2003).  The plotted values are 

forecasted changes in part 1 property crimes in December made at the end of 

November in a particular year.  Increasingly dark solid-fill shading shows areas of 

increasingly larger forecasted increases and increasingly dark cross-hatching 

shows areas of increasingly larger forecasted decreases.  While there are 103 

grid cells, only nine have forecasts of sizable increases and of those only two 

have large increases (grid cells 61 and 77).  Thus crime analysts would likely 

start working with the two worst cases, and then proceed to the other seven. 

 CEWS includes drill-down to individual crime points of the most recent 

month – either for the crime type of the grid cells (part 1 property crimes) or 
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corresponding leading indicator crimes (such as criminal mischief and disorderly 

conduct).  Figure 2 is a drill-down (zoom in) to grid cell 77 showing crime points 

for two part 1 property crime types, burglary and larceny, in November.  Clearly, 

there are hot spot clusters for both crime types.  Based on an assumption of 

persistence for the hot spots (e.g., Block 1995, Harries 1999, Liu and Brown 

2003), and a study of corresponding crime reports and modus operandi data 

(e.g., place of entry, time of day, etc.), crime analysts can suggest places and 

times to patrol hot spot areas within grid cells.   

 

NEED FOR AUTOMATED DETECTION 

A problem with attempting to identify crime time series pattern changes for 

current conditions is that the analyst must examine time series plots of about five 

years length each month.  Analysts have to account for regular noise versus 

departures from established time trend patterns such as a sudden discrete 

change (step up or down) or a turning point (e.g., change from a decreasing time 

trend to an increasing trend).  This work can be done by visual examination, but 

generates an unacceptably-large workload because analysts must work with 

relatively small geographic areas, such as grid cells or census tracts.  For 
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Figure1: Early Warning System with Forecasted 
Change in Serious Property Crimes For December 
Made at the End of November. 

 

Figure 2: Zoom-In to Grid Cell 77 to 
View November Crime Points. 
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example, in Pittsburgh, there are approximately 100 grid cell areas to examine 

and at least 10 crimes of interest, yielding roughly 1,000 crime series plots to 

generate and examine each month.  Clearly it is infeasible to implement pattern 

change detection with visual examination.  This is where tracking signals come 

into play.  They automatically flag exceptional time series. 

Time series tracking signals are widely used by businesses for sales 

forecasting and inventory control to generate exception reports of time series that 

have likely deviated from their historical time trends.  Next is a brief review of 

tracking signals. 

 

TRACKING SIGNALS 

An approach to evaluating a phenomenon at a point in time is to make a 

counterfactual forecast for the point, which predicts the point under business-as-

usual conditions.  Then a tracking signal can be established, based on the actual 

crime data point and in reference to the corresponding counterfactual, so that if 

the tracking signal exceeds a selected control limit, an exception report is tripped 

for a potential time series pattern change.  We use extrapolative time series 

forecasts to make counterfactual forecasts; namely, the most accurate 

extrapolative forecast method as determined by Gorr, Olligschlaeger, and 

Thomson (2003) for one-month-ahead crime forecasts.  This is Holt exponential 

smoothing with smoothing parameters optimized (see Bowerman and O’Connell 

1993, pp. 400-403) and using time series data deseasonalized with multiplicative 
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seasonal factors estimated from jurisdiction-wide data and by classical 

decomposition (see Bowerman and O’Connell 1993, pp. 355-368).  Thus, 

business-as-usual is defined to be a time series pattern following a smoothed 

linear time trend (straight line fitted to the time trend, placing most weight on the 

most recent data points) and monthly seasonal factors such as 1.25 (25 percent 

higher seasonal effect) or 0.80 (20 percent lower seasonal effect).  The 

counterfactual forecast extends the estimated time trend ahead to the point being 

analyzed and applies the corresponding seasonal multiplier, using all prior data 

to estimate trend and seasonality. 

Tracking signals generally are ratios in which the numerator is a sum or 

weighted sum of counterfactual forecast errors that has an expected value of 

zero when time series patterns (time trend and seasonality) are stable.  When 

there is a pattern change, such as a step jump or turning point, the numerator 

moves away from zero.  The denominator’s purpose is to normalize by the long-

term average variability of forecast errors.  Of the common tracking signals, the 

smoothed error signal due to Trigg (1964) is a good choice for practitioners 

(McClain, 1988).   The equations are as follows: 

 

Et = α1et + (1- α1)Et-1       (1) 

MADt = α2|et| + (1- α2)MADt-1      (2) 

Tt = |Et/MADt|         (3) 

 

where 
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MAD = mean absolute deviation of forecast errors 

Et = smoothed forecast error  

T = tracking signal 

t = month being evaluated 

et = counterfactual forecast error 

 α1 = smoothing factor for numerator  

 α2 = smoothing factor for denominator 

 

We implement this signal with smoothing parameter values as suggested by 

McClain: α1=0.40 for the smoothed sum of errors for the numerator (in order to 

quickly detect pattern changes) and α2=0.05 for the denominator of smoothed 

mean absolute deviations of forecast errors.  The initial value for E0 is assumed 

to be 0, so that there is a burn-in period during which the tracking signal adapts 

to the actual pattern and forgets the initial value.  In addition to computing the 

tracking signal, the analyst must also choose critical values which, if exceeded, 

trip an exception report.  We make the critical value an experimental treatment, 

trying a range of critical values in an attempt to tune tracking signal behavior to 

match crime analysts’ judgment on crime pattern changes. 

These equations are easily implemented in a spreadsheet package for 

experimentation, but normally would be programmed to work automatically within 

a CEWS.  Figure 3 is an example of equations 1-3 applied to monthly time series 

data for 911 drug calls in grid cell 120 of Figure 1.  Each tracking signal value 
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has five years of historical data behind it in order to estimate corresponding 

counterfactual forecast models.   

Marked for comparison purposes are two pattern changes and an outlier.  

The actual and forecasted crime levels have been rescaled to match the vertical 

scale of the tracking signal.  When the tracking signal crosses above the control 

limit line, it issues (trips) an exception report, warranting analysis of this time 

series.  As J. McClain (1988, p. 563) states “A perfect tracking signal  

 

 

 

 

 

 

 

 

 

 

 

 

 

would detect an out-of-control forecast (i.e., a time series pattern change) 

immediately, and would never give a false alarm.”  Of course, this is not possible, 

so in Figure 3 the reader can see false positives (the first and third trips), but also 

Figure 3: Sample Tracking Signal for 911 Drug Calls in 
Grid Cell 120 with Marked Pattern Changes and Outlier. 
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actual positives detected immediately (the second and fourth trips), and a delay 

in detecting an actual positive (the last data point which appears as if it would be 

detected if one more data point were available). 

 

RESEARCH DESIGN 

 This section addresses the question of whether tracking signals really 

perform well for detecting changes in crime series patterns.  We must account for 

false positives and determine if tracking signals reduce workloads adequately.  

We have not seen any attempts in the literature to validate tracking signals with 

actual data, as in Figure 3.  All validations appear to have used simulated data 

with known pattern changes and outliers.  It is very desirable, however, to use 

actual data in order to assess value in a given context; namely, will tracking 

signals adequately reduce workload and not miss actual positives?  Thus, we 

assumed that the purpose of tracking signals is to match behavior of trained, 

human judges (crime analysts), and simply automate their decisions on pattern 

changes and outliers.   

 We did not have the resources to embark on a full-scale validation; hence, 

we decided to carry out an exploratory study to determine the feasibility of our 

approach and provide preliminary results.  We chose 10 crime time series from 

the Pittsburgh grid system of Figure 1.  They consist of a variety of crime types 

with five time series having pattern changes and the other five not having any.  It 

is important to include time series with no pattern changes to assess false 

positive rates.   
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 Both authors independently marked-up each of the time series for pattern 

changes and outliers, as in Figure 3, under the guideline that we would only mark 

those that are large and obvious.  We then compared results and reconciled 

differences.  One of us had merely admitted some smaller pattern changes in 

interpreting “large and obvious”.  The result was 18 instances of pattern changes 

or outliers in five of the time series used in our analysis. 

Our treatment of the smoothed signal tracking signal was to use it with a 

variety of control limits, searching for the control limit that best matches detection 

of our judged, true pattern changes.  After some trial and error, we decided to 

use values of 0.84, 1.05, 1.26, and 1.47.  This range starts at a low value (0.84) 

that detects most of the actual positives, but at the cost of tripping many false 

positives (false alarms).  At the other extreme (1.47), there are fewer detections 

of actual positives, but also many fewer false positives.  

 

RESULTS 

 We applied equations 1-3 on the 10 time series over the 36 month period 

in which counterfactual forecasts were made.  In reporting results, we decided to 

exclude the first six months of tracking signals for burn-in so that the tracking 

signal could forget arbitrary initial values and start tracking correctly.  Hence 

there were 10 time series times 30 months each for a total of 300 signal values 

estimated.  Also, this translates to 300 time series plots that a crime analyst 

would have had to examine to accomplish the same task.   
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We define an exception report “epoch” to be the total number of time 

periods that the tracking signal is above its control limit, including the first month 

that it trips.  We assume that the crime analysis protocol is that the crime analyst 

must investigate each time series plot and corresponding crime maps for each 

month of epochs.  Hence the count of all epoch months is a measure of the work 

load that the crime analyst would have to do when using tracking signals.  The 

comparison without a tracking signal is 300 or 10 per month. 

 Table 1 is the result of our research.  For a control limit of 0.84, the 

tracking signal detects 17 (94%) of the 18 actual positives, which appears to be 

quite good.  It also does so with no lag or one period lag.  The cost is, that of the 

average total of 4 time series per month to be examined (instead of 10), 2.9 are 

false positives.  At the other extreme, with a control limit of 1.47, only 11 (61%) of 

the actual positives are detected, but the total workload per month is down to 1.6 

time series, 1 of which is a false positive.  The number of false positives falls 

quickly between the first two control limits in Table 1 and then flattens out.   

 

 

Control 
Limit 

True Positives 
Detected 

Average                     
Workload                   
(Time Series/Month) 

Average                     
False Positives            
(Time Series/Month) 

0.84 17 (94%) 4.0 2.9 

1.05 13 (72%) 2.8 1.9 

1.26 12 (67%) 2.1 1.4 

1.47 11 (61%) 1.6 1.0 
 

Table 1. 
Final Results on Validation Research 
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We believe that these results are promising because they show a 60% work 

reduction for the most stringent case and up to an 84% work load reduction for 

the least stringent case.  

  

CONCLUSION 

 This paper has discussed crime early warning systems and introduced an 

application of tracking signals for detecting experienced time series pattern 

changes in crime maps.  The basis of the tracking signal is information obtained 

from counter-factual forecasts for each point examined.  These are forecasts 

providing business-as-usual estimates for a point in time, as if no pattern 

changes existed.  The tracking signal automates detection of pattern changes by 

matching the decisions of crime analysts as to what data points constitute the 

start of a new time series pattern.  We varied the control limit of the tracking 

signal, making it more or less sensitive to information in the time series data in 

attempting to tune the tracking signal to match crime analysts’ decisions. 

  In future work it will be necessary to take a large sample of time series, 

have crime analysts mark them up for pattern change points and outliers, and 

rerun the research study.  Additional tracking signals may be tried, as well as 

varying the tracking signal numerator’s smoothing factor (which we did not do) for 

further tuning and attempting to improve performance..   
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